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We present a high order multivariate approximation scheme for scattered data sets. Each
data point is represented as a Taylor series, and the high order derivatives in the Taylor ser-
ies are treated as random variables. The approximation coefficients are then chosen to min-
imize an objective function at each point by solving an equality constrained least squares.
The approximation is an interpolation when the data points are given as exact, or a nonlin-
ear regression function when nonzero measurement errors are associated with the data
points. Using this formulation, the gradient information on each data point can be used
to significantly reduce the approximation error. All parameters of the approximation
scheme can be computed automatically from the data points. An uncertainty bound of
the approximation function is also produced by the scheme. Numerical experiments dem-
onstrate that although this method is more computationally intensive than traditional
methods, it produces more accurate approximation functions.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Methods for approximating a continuous target function using finite measurements of the function have been extensively
studied since ancient times [1]. These methods include interpolation schemes and regression schemes, both have ubiquitous
applications in computational science and engineering. In numerical schemes for solving differential equations, approxima-
tion schemes are used to reconstruct the continuous solution from its value on a finite set of grid points. Polynomial inter-
polation is an essential part of spectral methods and finite element methods [2,3]. B-splines [4] and radial basis function
approximations [5,6] have also been used in spectral methods and meshless methods for differential equations. In uncer-
tainty quantification, interpolation schemes can be used to construct surrogate response functions of the quantities of inter-
est [7,8]. The statistics of these quantities then can be efficiently sampled from the surrogate functions. In lattice based
numerical optimization, approximation schemes are used to construct surrogate functions, based on which the search direc-
tions are determined.

Multivariate interpolation was first studied by Borchardt [9] and Kronecker [10]. de Boor and Ron proposed the ‘‘least
solution” for multivariate polynomial interpolation for non-uniform grid [11]. Multivariate rational interpolation has been
studied in [12]. In addition to extensions of one-dimensional interpolation methods, many schemes are proposed specifically
for interpolating scattered data sets in multi-dimensional spaces. Shepard’s method [13], Kriging [14], and radial basis func-
tion interpolation [15,16] are among the most popular multivariate interpolation methods. Comprehensive surveys of scat-
tered data interpolation schemes can be found in [17,18].

We have recently developed a uni-variate interpolation and regression scheme for arbitrary grids [19]. In this scheme, the
interpolant function is a rational function with no singularities, and we have proved that the approximation error converges
at a rate faster than any polynomial order (i.e., exponential rate).
. All rights reserved.
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In this paper, we extend our uni-variate approximation scheme to multiple dimensions with scattered data points. We
also show that ‘‘gradient data points” can be used to improve the accuracy of the approximation. In this scheme, high order
approximation of the target function on scattered points is achieved by explicitly minimizing the estimated interpolation
error at each point. Our method is unique in that we do not specify a class of functions (such as polynomials or linear com-
bination of radial basis functions) in which the approximation function lies. Instead, the approximation function is con-
structed pointwise by minimizing an estimate of the approximation error at that point. Compared to moving least
squares approximation, which is a regression approximation with similar pointwise evaluation, our approximation scheme
can either be a interpolation with high rate of convergence, a regression scheme, or a mixed approximation surface.

The remainder of this paper is organized as follows: Section 2 derives the mathematical formulation of the scheme. Sec-
tion 2.1 defines the mathematical notations used throughout this article, and outlines the mathematical derivation. Sections
2.2 and 2.3 go through the derivation of the scheme step by step. Section 2.4 summarizes the resulting approximation
scheme. For readers that are not interested in the mathematical details, it is possible to skip Sections 2.2 and 2.3. In later
sections, however, we refer to these sections to explain some characteristics of our approximation scheme.

Section 3 is an essential part of this article. In this section, we characterize our approximation scheme both as an inter-
polation scheme and as a nonlinear regression scheme, depending on whether the estimated measurement errors associated
with the data points are zero. Section 3.1 defines the prediction interval, which is a natural output of our approximation
scheme.

Section 4 describes the four parameters that can be controlled by the user. Several examples are given to illustrate how
these parameters influence the behavior of the approximation function. Section 5 describes our method of calculating these
parameters from data points, which is the internal mechanism of making the ‘‘automatic” mode possible.

Section 6.1 provides some examples of our approximation scheme with automatically calculated parameters. Although
having a higher computational cost than other methods, it is evident from these examples that our approximation scheme
has the advantage of accuracy, robustness, and the ability to use gradient information to improve the approximation. Finally,
Section 9 summarizes the topics discussed in this article and outlines further research directions.

2. Mathematical formulation

2.1. Notation and basic formulation of ~f

We consider a target function f in a d-dimensional space. The values of the function is measured at nv points xvi,
i = 1, . . . ,nv. Each xvi is a d-dimensional vector xvi = (xvi1, . . . ,xvid), representing a point in the d-dimensional space. These points
are called ‘‘value nodes”. The measurement of the function at xvi is f̂ ðxviÞ, which is f(xvi) plus a measurement error. The esti-
mated size of the measurement error rvi P 0 is assumed known. When rvi = 0, we assume that the measurement is exact,
and f̂ ðxviÞ ¼ f ðxviÞ. The data points ðxvi; f̂ ðxviÞÞ; i ¼ 1; . . . ;nv are called ‘‘value data points”.

The gradient of the function is measured at ng points xgi, i = 1, . . . ,ng. Each xgi is also a d-dimensional vector xgi =
(xgi1, . . . ,xgid), representing a point in the d-dimensional space. These points are called ‘‘gradient nodes”. The measurement
of the gradient of f at xgi is a d-dimensional vectorrf̂ ðxgiÞ ¼ ðr1 f̂ ðxgiÞ; . . . ;rdf̂ ðxgiÞÞ, which is the exact gradientrf(xgi) plus a
measurement error, where the exact gradient
rf ¼ ðr1f ðxgiÞ; . . . ;rdf ðxgiÞÞ; where rkf ðxgiÞ ¼
@f
@xk
ðxgiÞ:
The estimated size of the measurement error rgi P 0 is again known. When rgi = 0, we assume that the measurement of the
gradient is exact, and rf̂ ðxgiÞ ¼ rf ðxgiÞ. The data points ðxgi;rf̂ ðxgiÞÞ; i ¼ 1; . . . ;ng are called ‘‘gradient data points”.

The high order derivatives of f are represented using multi-index notation. Let j = (j1, . . . ,jd) be a d-dimensional multi-
index, the j-order derivative of f is defined as
f ðjÞ ¼ @jjjf
@xj1

1 � � � @xjd
d

:

The absolute value, also called the total order of j is defined as
jjj ¼
Xd

k¼1

jk;
and the factorial of j is defined as
j! ¼
Yd

k¼1

jk!
In addition, the j order multivariate monomial is defined as
xj ¼ xj1
1 � � � x

jd
d :
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Specifically, we denote the unit multi-indices as ek, k = 1, . . . ,d, which is defined as
ek ¼ ðdk1; . . . ; dkdÞ; where dkj ¼
1; k ¼ j;
0; k – j:

�

These notations are used throughout this paper.
Using the information from the value data points and gradient data points, we construct an approximation function ~f . The

specific form of the approximation is
~f ðxÞ ¼
Xnv

i¼1

aviðxÞf̂ ðxviÞ þ
Xng

i¼1

agiðxÞ � rf̂ ðxgiÞ; ð1Þ
where each avi is a scalar valued function of x, and each agi is a vector valued function of x. Both avi and agi are called ‘‘basis
functions”. When considering a fixed x, we denote the values of the basis functions avi(x) and agi(x) as avi and agi. We also use
the notations av ¼ ðav1; . . . ; avnv Þ, ag ¼ ðag1; . . . ; agng

Þ, and a = (av,ag) to denote the value of all the basis functions at x. Once the
basis functions are determined, the approximation function ~f ðxÞ is determined by Eq. (1).

In the rest of Section 2, we discuss our approach of constructing these basis functions. They are constructed so that the
approximation error ~f ðxÞ � f ðxÞ is small for infinitely differentiable functions. Section 2.3 transforms this objective into a
least squares problem, which can be solve to obtain the values of the basis functions.

2.2. Representing the approximation error with Taylor expansions

Incorporating Eq. (1) into the approximation error at some point x in the d-dimensional space, we get
~f ðxÞ � f ðxÞ ¼
Xnv

i¼1

avi f̂ ðxviÞ þ
Xng

i¼1

agi � rf̂ ðxgiÞ � f ðxÞ

¼
Xnv

i¼1

avif ðxviÞ þ
Xng

i¼1

agi � rf ðxgiÞ � f ðxÞ þ
Xnv

i¼1

aviðf̂ ðxviÞ � f ðxviÞÞ þ
Xng

i¼1

agi � ðrf̂ ðxgiÞ � rf ðxgiÞÞ: ð2Þ
Since we consider the approximation error at a single point x, here we can denote the values of the basis function avi and agi

at x as avi and agi without confusion. This notation will be used throughout the paper.
In order to estimate this approximation error, we expand each f(xvi) around x using the multivariate Taylor’s theorem:
f ðxviÞ ¼ f ðxÞ þ
X

0<jjj6N

f ðjÞðxÞ
j!
ðxvi � xÞj þ

X
jjj¼Nþ1

f ðjÞðnijÞ
j!

ðxvi � xÞj; ð3Þ
where j is a multi-index notation defined in Section 2.1. The residual term of the Taylor expansion includes the high order
derivatives of f at some unknown points nij, which is generally different for each i and j.

The order of the Taylor expansion is chosen so that the number of derivative terms in the expansion matches the degree of
freedom provided by the data points. More precisely, N is chosen so that
jfj : jjj < Ngj � nv þ dng : ð4Þ
This choice of Taylor expansion order is determined by the maximum amount of information that can be extracted from
the given set of data. Consider a very smooth function whose high order derivatives decay very fast. With nv value data
points and ng gradient data points, a total of nv + dng number of lowest order function derivatives f(j)(x) can be uniquely
determined. This yields an accurate approximation given that higher order derivatives are relatively unimportant. When
the function to be approximated is less smooth, data points that are far away is not useful in determining the derivatives
of the function. Therefore, the amount of high order information that can be extracted from the data is always bounded by
nv + dng. For this reason, we always limit the order of our Taylor expansion, so that it contains approximately nv + dng

terms.
Similarly, each rf ðxgiÞ ¼ f ðekÞðxgiÞ can also be expanded around x with Taylor’s theorem:
rkf ðxgiÞ ¼
X
jjj<N

f ðjþekÞðxÞ
j!

ðxgi � xÞj þ
X
jjj¼N

f ðjþekÞðgikjÞ
j!

ðxgi � xÞj

¼
X

0<jjj6N
jk>0

f ðjÞðxÞ
ðj� ekÞ!

ðxgi � xÞj�ek þ
X
jjj¼Nþ1
jk>0

f ðjÞðgikjÞ
ðj� ekÞ!

ðxgi � xÞj�ek ; ð5Þ
where ek is the unit multi-index defined in Section 2.1. The residual term of the Taylor expansion includes the high order
derivatives of f at some unknown points gikj, which is generally different for each i, k and j.
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Incorporating these Taylor expansions into Eq. (2), the error of the approximation can be represented as
~f ðxÞ � f ðxÞ ¼
X
jjj6N

f ðjÞðxÞXjðx; aÞ þ
X
jjj¼Nþ1

Xnv

i¼1

f ðjÞðnijÞ avi
ðxvi � xÞj

j!

� �
þ

X
jjj¼Nþ1

Xd

k¼1
jk>0

Xng

i¼1

f ðjÞðgikjÞ agik
ðxgi � xÞj�ek

ðj� ekÞ!

� �

þ
Xnv

i¼1

ðf̂ ðxviÞ � f ðxviÞÞavi þ
Xd

k¼1

Xng

i¼1

ðrkf̂ ðxgiÞ � rkf ðxgiÞÞagik; ð6Þ
where
Xjðx; aÞ ¼

Pnv

i¼1
avi � 1; jjj ¼ 0;

Pnv

i¼1
avi

ðxv i�xÞj
j!
þ
Pd
k¼1
jk>0

Pnv

i¼1
agik

ðxgi�xÞj�ek

ðj�ekÞ!
; jjj > 0:

8>>>>><
>>>>>:

ð7Þ
Eq. (6) splits the approximation error ~f ðxÞ � f ðxÞ into three distinct parts:

1. The first line represents the contributions from the derivatives of the f at x, i.e.,
f ðjÞðxÞ; 0 6 jjj 6 N:
These quantities are unknown; however, their coefficients in Eq. (6), Xjðx; aÞ, are functions of x and the values of the basis
functions avi and agi at x.
2. The second and third lines are the residuals of the Taylor expansions. They represent the contribution from the high order

derivatives of f at unknown points nij and gikj, i.e.,
f ðjÞðnijÞ; i ¼ 1; . . . ; nv and f ðjÞðgikjÞ; i ¼ 1; . . . ;ng ; k ¼ 1; . . . ; d
for all jjj = N + 1. These quantities are unknown; however, their coefficients in Eq. (6),
avi
ðxvi � xÞj

j!

� �
and agik

ðxgi � xÞj�ek

ðj� ekÞ!

� �
;

are functions of x and the values of the basis functions avi and agi at x.
3. The last line represents the contribution from the measurement errors
f̂ ðxviÞ � f ðxviÞ and rkf̂ ðxgiÞ � rkf ðxgiÞ:

These measurement errors are unknown; however, their coefficients in Eq. (6) are simply the values of the basis functions avi

and agi at x. When measurement errors are absent, this part is absent from Eq. (6).

2.3. Least squares for the approximation error

We constrain the basis functions with
Xnv

i¼1

av i � 1; ð8Þ
so that the approximation (1) is exact for a constant function f. With this constraint, the formula for the approximation error
(6) becomes
~f ðxÞ � f ðxÞ ¼
X

0<jjj6N

f ðjÞðxÞXjðx; aÞþ
X
jjj¼Nþ1

Xnv

i¼1

f ðjÞðnijÞ avi
ðxvi � xÞj

j!

� �

þ
X
jjj¼Nþ1

Xd

k¼1
jk>0

Xng

i¼1

f ðjÞðgikjÞ agik
ðxgi � xÞj�ek

ðj� ekÞ!

� �
þ
Xnv

i¼1

ðf̂ ðxviÞ � f ðxv iÞÞavi þ
Xd

k¼1

Xng

i¼1

ðrkf̂ ðxgiÞ �rkf ðxgiÞÞagik: ð9Þ
This equation represents the approximation error at each point as a linear combination of the following unknowns: the
derivatives f(j)(x), f(j)(nij), f(j)(gikj), and the measurement errors f̂ ðxviÞ � f ðxviÞ and rkf̂ ðxgiÞ � rkf ðxgiÞ. We construct the fol-
lowing weighted L2 norm of this linear combination:
Qðx; aÞ ¼
X

0<jjj6N

w2
jjjX2

jðx; aÞ þ
X
jjj¼Nþ1

Xnv

i¼1

w2
jjj avi

ðxvi � xÞj

j!

� �2

þ
X
jjj¼Nþ1

Xd

k¼1
jk>0

Xng

i¼1

w2
jjj agik

ðxgi � xÞj�ek

ðj� ekÞ!

� �2

þ
Xnv

i¼1

r2
via

2
vi þ

Xd

k¼1

Xng

i¼1

r2
gia

2
gik; ð10Þ
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where the weights are
1 The
details.

2 To
values o
wj ¼ bcj; j ¼ 0; . . . ;N þ 1: ð11Þ
The purpose of the weighted L2 norm Qðx; aÞ defined in Eq. (10) is to reflect the size of the approximation error in Eq. (9).
The coefficients of the j order derivatives in Eq. (9) are weighted by wjjj in Eq. (10); and the coefficients of the measurement
errors in Eq. (9) are weighted by their estimated sizes rvi and rgi in Eq. (10). The parameters ‘‘magnitude” b and ‘‘wavenum-
ber” c control the weights wj. They are two important parameters of our scheme. ForQðxÞ to best reflect the size of ~f ðxÞ � f ðxÞ,
these should be chosen so that the weights wj = bcj reflect the size of f(j)(x), jjj = j. Sections 4.2 and 4.1 discuss how b and c
affect the behavior of the approximation ~f ðxÞ. Section 5 shows our method of automatically calculating these parameters
from the given data points.

The values of the basis functions at x is calculated by solving an equality constrained least squares problem
minQðx; aÞ s:t:
Xnv

i¼1

avi ¼ 1; ð12Þ
where Qðx; aÞ is defined in Eq. (10). The value of the approximation ~f ðxÞ is then determined by Eq. (1).

2.4. The approximation scheme

The following scheme summaries the construction of the approximation function ~f ðxÞ:

1. Gather the input data: the value data points ðxvi; f̂ ðxviÞÞ, the gradient data points ðxgi;rf̂ ðxgiÞÞ, and the estimate of their
measurement errors rvi and rgi.

2. Determine the two parameters of the scheme1: the ‘‘wavenumber” c and the ‘‘magnitude” b.
3. For each point x where ~f ðxÞ is desired, construct the matrices for the constraints and the least squares. The elements of

these matrices are simply the coefficients of avi and agik in Eqs. (7) and (10).
4. For each point x where ~f ðxÞ is desired, solve the equality constrained least squares (12) for avi(x) and agik(x).2

5. Calculate ~f ðxÞ for each x using Eq. (1).

3. ~f as an interpolation and regression approximation

In this section, we first show that the approximation ~f is an interpolation approximation when the measurement errors of
the value data points are zero. In fact, when rvi = 0 and x = xvi, the solution for the constraint least squares (12) is
av i0 ¼
1; i0 ¼ i;

0; i0 – i;

(

agi0 ¼ 0; 8i0:

ð13Þ
This can be verified by the following: Incorporating (13) and x = xvi into Eqs. (7) and (10), we get Xjðx; aÞ ¼ 0 8j and
Qðx; aÞ ¼ 0. Therefore, the constraint (8) are satisfied while Qðx; aÞ is minimized. Thus, (13) is the solution of (12). Now
we incorporate (13) into Eq. (1), we get
~f ðxÞ ¼ f̂ ðxviÞ: ð14Þ
In other words, the approximation function ~f ðxÞ goes through the value data point ðxvi; f̂ ðxviÞÞ. Therefore, our scheme of con-
structing ~f ðxÞ as an interpolation scheme when rvi = 0.

When the measurement errors are nonzero, ~f behaves like a regression function, which does not go through each data
point. Fig. 1 shows the approximation function ~f ðxÞ for the same value data points with different rvi. As can be seen, when
the rvi = 0, ~f ðxÞ is an interpolation function. As rvi increases, ~f ðxÞ becomes less oscillatory, and behaves more like a regression
function. When rvi have different values at different data points, ~f ðxÞ interpolates through the data points whose rvi = 0, and
is closer to the data points whose rvi are small.

3.1. Prediction interval

The prediction interval of our approximation scheme is constructed as following:
ð~f ðxÞ � crðxÞ;~f ðxÞ þ crðxÞÞ; where rðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qðx; aÞ

p
: ð15Þ
se parameters can be set to default values or automatically calculated without significantly affecting the performance of the scheme. See Section 5 for

solve this equality constrained least squares, We use the algorithm described in Section 7 of [19] when P = 1, and Algorithm 12.1.2 in [20] for other
f P.



Fig. 1. ~f calculated on the same data points with different rvi. b = 0.5, c = 10. Filled circles represent the data points; the vertical bars indicates the size of
rvi; the solid line is ~f ðxÞ; the dotted lines represent the prediction interval ð~f ðxÞ � rðxÞ;~f ðxÞ þ rðxÞÞ. rvi = 0 in the upper-left plot; rvi = 0.1 in the upper-right
plot; rvi = 0.5 in the lower-left plot; in the lower-right plot, rvi has different values at each data point.
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The factor c is usually chosen between 1 and 3. A larger c produces a more conservative prediction interval.
In Fig. 1, the confidence interval with c = 1 is plotted as dotted lines. As can be seen, when the measurement errors are 0,

the size of the prediction interval is zero at the data points. The size of the prediction interval increases as x moves away from
the data points. In addition, the larger the size of the measurement errors rvi, the larger the prediction interval is. Finally, we
observe that the prediction intervals are generally larger in the extrapolation region than in the interpolation region.

This prediction interval can be a powerful tool of quantifying uncertainties generated by interpolating between data
points. In the case of regression, where the uncertainties of data points are given as rvi, the prediction interval can be used
to propagate the uncertainties from the input data points to the interpolated values. In addition, the prediction interval can
be used to automatically estimate the wavenumber parameter c, as discussed in detail in Section 5.
4. Parameters of the approximation scheme

4.1. The wavenumber c

The wavenumber c determines the rate of growth or rate of decay of the weights wj in Eq. (10). When c is larger than 1, wj

grows as j increases. In this case, heavier weights are assigned to the higher order derivatives in constructing the objective
function Q defined in Eq. (10). Thus, when we substitute the solution of the least squares into Eq. (9), the contribution to the
approximation error ~f ðxÞ � f ðxÞ from the high order derivatives is smaller compared to the contribution to the approximation
error from the lower order derivatives. As a result, as c increases, the approximation function ~f ðxÞ visually appears to be more
like a lower order approximation. On the other hand, when c is smaller than 1, wj decays as j increases. In this case, heavier
weights are assigned to the lower order derivatives in constructing the objective functionQ. Thus, when we plug the solution
of the least squares into Eq. (9), the contribution to the approximation error from the high order derivatives is larger com-
pared to the contribution to the approximation error from the lower order derivatives. As a result, as c decreases, the approx-
imation function ~f ðxÞ visually appears to be more like a higher order approximation.

Fig. 2 shows the approximation function ~f ðxÞ for the same set of data points with four different wavenumber parameter c.
The data points indicated by the black circles are exact measurements of the target function f ðxÞ ¼ e�4ðx1�x2Þ2 . rvi are set to
zero, and the approximation function ~f ðxÞ is a two-dimensional interpolation surface. As can be seen, when c is small, the
approximation surface appears to be a smooth function full of tension. Larger overshoots occur in regions where the data
points are sparse. Conversely, when c is large, the approximation function looks more like a piecewise constant approxima-
tion. Steep slopes divide flat plateaus encompassing each data point. In contrast to the small c case, the approximation func-
tion never overshoot the data points.



Fig. 2. The target function f ðxÞ ¼ e�4ðx1�x2Þ2 (upper-left); and the approximation function ~f ðxÞ constructed on the same data points with different
wavenumber c: c = 0.5 (upper-right), c = 3.0 (lower-left), c = 10.0 (lower-right). The magnitude parameter b = 0.5. Both the z-axis and the color indicate the
function value. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3 further illustrates the effect of c by plotting the basis function avi(x), where i corresponds to the data point near the
center of the domain. Again, we see large overshoot in the basis function with the smaller c, and only slight overshoot in the
large c case. In addition to the different magnitudes of overshoot, we observe that the supports of the basis functions are
different in the two cases. When the wavenumber c is large, the basis function has a local support, i.e., it is nonzero only
in a small region around the xvi, and is almost zero elsewhere. As a result, the data point at xvi has significant effect on
the value of the approximation function ~f ðxÞ only in the small region around xvi. From another perspective, the value of
the approximation function at each point is determined by the value of its nearby one or two data points. As c decreases,
Fig. 3. The basis function avi(x) on the same grid with different wavenumber c: c = 2.0 (left), c = 10.0 (right). The magnitude parameter b = 0.5. Both the z-
axis and the color indicate the value of the basis functions.
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the support of the basis functions increases. As a result, the value of the approximation function ~f ðxÞ at each point is affected
by additional surrounding data points. When c is very small, the basis function is nonzero everywhere, and the approxima-
tion function at every x is determined by the collective effect of all the data points. In conclusion, ~f gradually changes from a
local approximation to a global approximation as c decreases.

The upper plot in Fig. 4 shows the L2 and L1 norms of the approximation error, the difference between the approximation
function and the target function f ðxÞ ¼ e�4ðx1�x2Þ2 . As can be seen, the approximation deteriorates when c is either too small or
too large. When c is large, the support of the basis functions are too small. As a result, ~f ðxÞ is constructed too conservatively,
based on the information from only one or two data points near x. In this case, decreasing c allows using more surrounding
data points to construct the approximation at each point, increasing its accuracy. On the other hand, however, a too small c is
much more dangerous than a too large c. The overshoots in regions where data points are relatively sparse can cause the
approximation error to be very large. When the number of data points is large, the overshoots and oscillations caused by
a too small c can be orders of magnitude larger than the target function itself. Therefore, choosing a value of c that is neither
too large nor too small is critical for ~f ðxÞ to be an accurate approximation.

The question of what value of c is optimal can be answered by analyzing the lower plot in Fig. 4. This plot shows the L2

and L1 norms of the prediction interval r(x), as defined in Eq. (15), as a monotone increasing function of c. Comparing it with
the upper plot, we observe that the approximation error reaches minimum when it has comparable size as the prediction
interval. This is not a coincidence. As discussed in Section 2.3, the best choice of c is when the weights wj = bcj correctly re-
flect the growth rate of the jth total order derivatives. With this c, the objective function Q defined in Eq. (10) reflects the
squared size of the approximation error as shown in Eq. (9). Consequently, the size of the prediction interval r(x), defined as
the square root of Q, has the same size as the approximation error. On the other hand, our objective of solving the least
squares (12) to minimize Q is to make the approximation error small. This objective is best achieved when the value of c
is chosen so that the size of Q reflects the squared approximation error. Therefore, when the value of c is chosen so that
the prediction interval has the same size as the approximation error, the approximation error is minimized. This principle
is used to determine the best value of c from the data point in Section 5.
Fig. 4. Norms of the approximation error ~f ðxÞ � f ðxÞ (upper plot) and the prediction interval r(x) (lower plot) plotted against the wavenumber c. The target
function is f ðxÞ ¼ e�4ðx1�x2 Þ2 . The magnitude parameter b = 0.5.
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4.2. The magnitude b

The magnitude b controls the size of all the weights wj in Eq. (10). It affects ~f ðxÞ only when the estimated measurement
errors rvi and rgi are nonzero. When the measurement errors are absent, b2 acts as a constant multiplier in constructing the
objective function Q. Therefore, it has no effect on the solution a of the least squares (12) and the approximation function ~f .
But when the measurement error terms in Eq. (10) are nonzero, b determines the weight of the measurement error term
relative to all other terms.

Fig. 5 illustrates the effect of b on ~f ðxÞ by plotting the approximation surface ~f ðxÞwith different values of b constructed on
the same set of data points. The 50 data points are indicated by the black circles, and the distance from the approximation
surface to the data points are indicated by the vertical lines. The location of these data points are generated randomly. Their
values equal to the target function f ðxÞ ¼ x2

1 þ x2
2 plus simulated measurement errors, which is independent Gaussian pseudo

random numbers with mean 0 and standard deviation 0.1. The approximation functions are constructed with rvi = 0.1.
As can be seen in Fig. 5, b determines the sensitivity of the approximation function to the value of each data point. When b

is small, the approximation surface is not sensitive to any single data point. It visually looks more like a nonlinear regression
surface, and is far away from many data points. In contrast, when b is large, the approximation surface is sensitive to each
data point. It visually looks more like a interpolation surface. The surface is much more oscillatory, and almost goes through
all the data points.

In fact, increasing b is equivalent of decreasing all the estimated measurement errors. The reason for this effect can be
found in Eq. (10). If the value of b and all rvi and rgi are doubled at the same time, the value of QðxÞ is simply multiplied
by a factor of 4, and the solution of the least squares (12) remains the same. Therefore, the same approximation is obtained
should one doubles the value of b, or half all values of rvi and rgi.

Fig. 6 plots the error norm of the approximation with respect to b. It shows that the approximation is optimal when b is
neither too small nor too large. When b is small, the approximation function is too far away from many data points. As can be
seen in the upper-left plot of Fig. 5, the approximation surface is too high in the center and too low near the edges compared
to the target function f ðxÞ ¼ x2

1 þ x2
2. The approximation error would have been reduced if the surface could bend more and fit
Fig. 5. The target function f ðxÞ ¼ x2
1 þ x2

2 (upper-left); and approximation function ~f ðxÞ constructed on the same data points with different magnitude b:
b = 0.02, b = 0.5 (lower-left), b = 100.0 (lower-right). The data points are corrupted with Gaussian random numbers to simulate measurement errors. The
wavenumber parameter c = 2.0. Both the z-axis and the color indicate the function value. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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closer to the data points. On the other hand, when b is large, the approximation function is too close to the data points that
are corrupted by large measurement errors, causing it to be oscillatory. As can be seen in the lower-right plot of Fig. 5, the
approximation error would have been reduced if the surface could be smoother by staying away from several data points
with obviously large measurement errors. Therefore, choosing a value of b that is neither too large nor too small is important
for ~f ðxÞ to be an accurate approximation in the presence of measurement errors.

The optimal value of b can be found in the definition of the weights wj = bcj. When j = 0, we have b = w0. Since the best
choice of wj should reflect the size of the jth total order derivatives of f, the best choice of b should reflect the magnitude of
variation of f. In our example of f ðxÞ ¼ x2

1 þ x2
2 in the box �1 < x1 < 1, �1 < x2 < 1, the magnitude of variation of the function

from its mean is about 1. Consequently, the optimal value of b is around 1. In Section 5, we use this rule to determine the best
value of b from the data points.
5. Determination of the parameters from data points

This section proposes a method for automatically determining a suitable set of parameters c and b from any given data
points. We provide some argument on why we use these formulas to automatically calculate the parameters. Although the
parameters calculated using this method are rarely the optimal set of values, they have been demonstrated to produce sat-
isfactory approximation functions in practice.

5.1. The magnitude b

As discussed in Section 4.2, the optimal value of b should reflect the magnitude of variation of the target function f(x),
which can be estimated by the standard deviation of the data points, i.e.
Fig. 6.
c = 2.0.
b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðf ðxv iÞ � �f Þ2

n� 1

s
; where �f ¼

Pn
i¼1f ðxv iÞ

n
:

In the presence of measurement error, f(xvi) are unknown, so we use the formula
b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðf̂ ðxv iÞ �

�̂
f Þ2

n� 1

s
ð16Þ
to estimate the parameter.

5.2. The wavenumber c

As discussed in Section 4.1, the optimal value of c is achieved when the prediction interval r(x) has the same magnitude
as the approximation error ~f ðxÞ � f ðxÞ. This rule allows us to determine c from the given data points using the following
bisection method. The upper and lower bounds are first determined from the spacing of the nodes, then the interval of pos-
sible c is bisected by interpolating each value data point using other data points, and comparing the approximation error
~f ðxviÞ � f ðxviÞ with r(xvi) calculated using (15).

In determining the upper and lower bounds, we rely on the fact that the reciprocal of c models the smallest length scale of
f. The possible length scales that can be reconstructed from the finite number of data points are limited by the span of the
data points on one end, and by the Nyquist frequency on the other end. Specifically, we start the bisection with
Norms of the approximation error ~f ðxÞ � f ðxÞ plotted against the magnitude b. The target function is f ðxÞ ¼ x2
1 þ x2

2. The wavenumber parameter
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cmin ¼
1

dmax
; cmax ¼

p
dmin

;

where dmax is the maximum distance between any two nodes, including value nodes and gradient nodes. dmin is the mini-
mum distance between any two nodes.

The interval [cmin,cmax] is then bisected in a logarithmic scale. At each step, set cmid ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficmincmax
p

. For each i = 1, . . . ,nv, we
use our interpolation scheme to calculate ~f ðxviÞwith c = cmid, using all data points other than the one at xvi. We then compare
r(xvi) with the approximation error ~f ðxviÞ � f ðxviÞ. We decide that c < cmid if r(xvi) are too large compared to the approxima-
tion errors, or c > cmid if they are too small. Specifically, we set
cmax ¼ cmid if
1
n

Xn

i¼1

ð~f ðxviÞ � f ðxviÞÞ2

rðxv iÞ2
<

1
CF
;

cmin ¼ cmid if
1
n

Xn

i¼1

ð~f ðxv iÞ � f ðxviÞÞ2

rðxviÞ2
>

1
CF
;

where CF is the conservative factor, which is usually set to 1. A larger CF produces a larger c, making the approximation
scheme more conservative and less prone to oscillations, but less accurate for smooth functions on good quality grids.

When the measurement errors are nonzero f(xvi) are unknown. In this case, we use a similar bisection criteria
cmax ¼ cmid if
1
n

Xn

i¼1

ð~f ðxviÞ � f ðxviÞÞ2

rðxviÞ2 þ r2
vi

<
1
CF
;

cmin ¼ cmid if
1
n

Xn

i¼1

ð~f ðxv iÞ � f ðxviÞÞ2

rðxviÞ2 þ r2
vi

>
1
CF
:

ð17Þ
The bisection continues until cmin and cmax are sufficiently close.
We stop the bisection when
cmax

cmin
< Tc
for some threshold Tc. At this point, we use cmid as the estimation for the ‘‘roughness” parameter c. Through numerical
experiments with a number of different functions, we found that Tc � 1.1 is enough to produce very good results.

6. Numerical experiments

This section uses several numerical experiments to demonstrate the robustness and accuracy of our approximation
scheme with automatically calculated parameters.

6.1. Using gradient data points

In the previous examples, we did not use any gradient data points, i.e., ng = 0. In this section, we demonstrate that using
gradient data points can greatly enhance the accuracy of the approximation function ~f ðxÞ.

The results presented in this section are calculated in the ‘‘automatic” mode. Instead of being set by the user, the param-
eters b and c are determined from the data points by Eqs. (16) and (17). These results also show that the methods of deter-
mining the parameters from the data points described in Section 5 work well.

Figs. 7 and 8 show the approximation results on a one-dimensional notch function
f ðxÞ ¼ cos x� 2e�ð4xÞ2 ;
which is plotted as dashed lines in Figs. 7 and 8. In the cases of nv = ng, the gradient nodes are the same as the value nodes. As
can be seen, the approximations constructed with ng = nv = 16 are as accurate as the approximation with nv = 24, ng = 0; while
the approximation constructed with ng = nv = 24 are much more accurate. Fig. 9 shows the approximation results on the two-
dimensional cosine function
f ðxÞ ¼ cos x1 þ x2;
whose contour consists of parallel diagonal straight lines. Fig. 10 shows the approximation results on the two-dimensional
Runge function
f ðxÞ ¼ 1
1þ x2

1 þ x2
2

;

whose contour consists of concentric circles. As can be seen, for the same nv, the contour lines of ~f ðxÞwith ng = nv always look
more similar to the contour lines of the target function than the contour lines of ~f ðxÞ constructed with ng = 0. The conver-



Fig. 7. Approximating the notched cosine function with uniform grids. The number of data points for each plot is nv = 24, ng = 0 (upper-left), nv = ng = 16
(upper-right), and nv = ng = 24 (lower-left). In the cases of nv = ng, the gradient nodes are the same as the value nodes. The target function is indicated by the
dashed lines, and the solid lines represent the approximation function ~f . The lower-right plot shows the convergence of the approximation error with
respect to nv. The circles indicates the case of ng = 0; the diamonds indicates the case of ng = nv. The solid lines indicates L2 error; the dotted lines indicates L1
error.

Fig. 8. Approximating the notched cosine function with quasi-random grids. The number of data points for each plot is nv = 24, ng = 0 (upper-left),
nv = ng = 16 (upper-right), and nv = ng = 24 (lower-left). In the cases of nv = ng, the gradient nodes are the same as the value nodes. The lower-right plot shows
the convergence of the approximation error.
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gence plots in all four figures convey the same information, i.e., for the same nv, the errors with ng = nv are always less than
the errors with ng = 0.



Fig. 9. Approximating the 2-D cosine function using quasi-random grids. The number of data points for each plot is nv = 16, ng = 0 (upper-left), nv = 36, ng = 0
(upper-right), nv = ng = 16 (middle-left), nv = ng = 36 (middle-right). In the cases of nv = ng, the gradient nodes are the same as the value nodes. The lower plot
shows the convergence of the approximation error with respect to nv (horizontal axis). The circles indicates the case of ng = 0; the diamonds indicates the
case of ng = nv. The solid lines indicates L2 error; the dotted lines indicates L1 error.
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6.2. Robustness to grid arrangement

Fig. 11 shows the behavior of the scheme when all the data points are located along a straight line. The contour lines indi-
cate that the scheme is robust to the arrangement of data points. Fig. 12 demonstrates the extrapolatory behavior of the
scheme. while all the data points lie on a parabola. The scheme extracts the negative y-component of the gradient from
the data points, and creates a peak below the x-axis. Fig. 13 shows the contour lines of the interpolation function for a dis-
continuous function
f ðx; yÞ ¼ þ1; xþ y P 0;
�1; xþ y < 0:

�

All data points lies on the line x = y. The interpolation surface show Gibbs oscillations near the discontinuity. The magnitude
of overshoot is comparable to that of Chebyshev polynomial approximation. Away from the data points, the jump is signif-
icantly smeared. In the three examples above, we use automatically calculated parameters as described in Section 5.



Fig. 10. Approximating the 2-D Runge function using quasi-random grids. The number of data points for each plot is nv = 16, ng = 0 (upper-left), nv = 36,
ng = 0 (upper-right), nv = ng = 16 (middle-left), nv = ng = 36 (middle-right). In the cases of nv = ng, the gradient nodes are the same as the value nodes. The
lower plot shows the convergence of the approximation error with respect to nv (horizontal axis). The circles indicates the case of ng = 0; the diamonds
indicates the case of ng = nv. The solid lines indicates L2 error; the dotted lines indicates L1 error.
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Fig. 14 shows our interpolation surface for the Runge’s function 1=ðx2
1 þ x2

2Þ with different grid arrangements. The L2 error
on the three grids are 0.004, 0.006 and 0.011, respectively; the L1 error are 0.039, 0.037 and 0.081, respectively. The param-
eters c and b are automatically calculated.

6.3. A five-dimensional example

Fig. 15 shows the approximation error for the Runge’s function in five-dimensional space:
f ðxÞ ¼ 1

1þ
P5

k¼1x2
k

; x 2 ½�1;1�5:
The data points are the 5D Niederreiter sequence, and the accuracy is measured on the 1501st to 1600th points in the sequence.
This example shows that our approximation scheme is scalable to high dimensions, and retains its high convergence rate.



Fig. 11. Interpolation surface when all the data points are located along a straight line.

Fig. 12. Interpolation surface when all the data points are located along a parabola.
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6.4. Comparison with kriging and Gaussian radial basis function

This section compares the accuracy and computational cost of our interpolation approximation against those of ordinary
kriging [21,14] and Gaussian radial basis function [15,16,22] in both 2D and 3D. In the 2D comparison, the data points are the
first n points in the 2D Niederreiter quasi-random sequence in the square domain [�2,2] � [�2,2]. The accuracy of the
schemes are accessed by evaluating the interpolant on the 501st to 600th points of the quasi-random sequence. The L1 error
of the approximation is estimated by the largest approximation error on the 100 points; the L2 error is estimated by the root
mean square of the approximation errors. In the 3D comparison, the data points are the 3D Niederreiter sequence, and the
accuracy is measured on the 1501st to 1600th points in the sequence.

From Fig. 16, it is clear that our approximation has higher rate of convergence than ordinary kriging with exponential
correlation function. When the number of data points is large enough, the approximation error of our scheme is much
smaller. Fig. 17 compares our approximation scheme with Gaussian radial basis function with kernels exp(�cr2/2), where



Fig. 13. Interpolation surface of a discontinuous function.

Fig. 14. Interpolating the Runge’s function with different grid arrangements. The number of data points are 106, 112 and 119, respectively.
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different colors represent the L2 error of different c. For smaller cs, the radial basis function approximation is more accurate
for small number of data points. As the number of data points increase, the relative accuracy of radial basis function with
small c deteriorates. This may be a result of the Runge’s phenomenon, as the refined data points resolve higher frequency
oscillations of the target function. Radial basis function approximation with larger c has larger approximation errors for
small number of data points; but its error continue to decrease exponentially as data points refine. Our approximation
scheme with automatically calculated parameters has consistent near-optimal performance across the range of data points.
In the 2D comparison, our scheme is about 5 times more accurate than Gaussian radial basis function with the optimal shape
function for large number of data points.

Fig. 18 compares the computational cost of our approximation scheme with ordinary kriging and Gaussian radial basis
function. The computations are performed on a 2.13 GHz Intel Xeon processor, using the GNU Scientific Library for linear
algebra calculations. The computation time of our method is what it takes to calculate the values of all basis functions avi

at each points, while the computation time of kriging and Gaussian RBF is what it takes to construct the interpolant. The
computation cost for evaluating the kriging and RBF interpolants are negligible. This comparison shows that our method
takes significantly more computation time. When the approximation function needs to be evaluated at many points, the
computation cost of our method is proportional to the number of points, while evaluating additional points for kriging
and RBF is essentially free. The operation count of our approximation scheme is discussed in detail in Section 7.

7. Discussion of computation cost, limitations and potential applications

Our approximation scheme solves a constrained least squares problem (12) for each point where the approximation func-
tion is evaluated. The computation cost for solving this least squares problem is OðNCN2

RÞ, where



Fig. 16. Comparison of interpolation accuracy with ordinary kriging with exponential correlation function.

Fig. 15. Interpolation error for the Runge’s function in 5D.
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NR ¼ nv þ dng
is the number of columns of the matrix involved, which is equal to the degree of freedom provided by the data points;
NC ¼ jfj : jjj < Ngj þ NR
is the number of rows of the matrix. Since N is chosen according to Eq. (4), we have NC � 2NR. Therefore, the computation cost
for evaluating each point is O((nv + dng)3).

Moreover, the algorithm for calculating the parameter c described in Section 5 adds another O(Knv(nv + dng)3) operations,
where K is the number of bisection iterations. This makes the total computation cost for evaluating the approximation func-
tion at L points the order of O((K nv + L) (nv + dng)3).

Besides the rapidly increasing computation cost, the condition number of the least squares system (12) is another con-
cern. The matrix involved in the least squares system (12) resembles a Vandermonde matrix, which is known to be ill-con-
ditioned at large size. Therefore, numerical issue will arise when the number of data points exceeds around 1000. In addition,
when two data points are very close to each other, the corresponding columns of the matrix will become almost linearly



Fig. 17. Comparison of interpolation accuracy with Gaussian radial basis function interpolation.

Fig. 18. Comparison of computation time with ordinary kriging and Gaussian RBF.
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dependent, making the matrix almost singular. Although our scheme works well for grids shown in Fig. 14, more extreme
point distributions will introduce large round-off errors in the approximation function.

The operation counts show that our scheme is more computationally expensive than most existing schemes; the condi-
tion number of the least squares system limits the number of data points. Nevertheless, our scheme is useful in some appli-
cations. A motivational example for the development of our approach is response surface modeling [23]. In this case, each
data point is obtained by solving a computationally intensive mathematical model such as a partial differential equation. The
total number of data points often does not exceed 1000. Each data point may contain different amount of uncertainty, which
can be estimated from the final residual of the evaluation. Gradient information may be available in the form of adjoint solu-
tions. Because obtaining the function value and gradient at each data point is computationally intensive, using our scheme to
construct a response surface often adds little to the total computation time. Compared to computation cost, accuracy is a
more important consideration in this application. Our approximation method is suitable for such applications.

8. Software implementation

This multivariate approximation scheme was implemented in an open source software package available under GNU
General Public License. The implementation is in C, using GNU Scientific Library for matrix manipulation and linear algebra.
Interfaces for three different languages, C, Fortran and Python, are supported. The source code can be downloaded at http://
web.mit.edu/qiqi/www/mir/.

9. Conclusion

We have developed a multivariate interpolation and regression scheme. The scheme produces an interpolation surface
when the data points are given as exact, or a nonlinear regression function when nonzero measurement errors are associated

http://web.mit.edu/qiqi/www/mir/
http://web.mit.edu/qiqi/www/mir/
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with the data points. The resulting approximation features high order convergence, and is robust for a variety of node dis-
tributions. Both parameters of the scheme, b and c, can be automatically determined based on the data points. An uncer-
tainty bound of the approximation function is also produced by the scheme. When the gradient measurement are
available at some nodes, they can be used to greatly improve the accuracy of the approximation.
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